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« Table-top sources in EUV and XUV

— EUV laser and high-harmonic sources
— Current capabilities

— Future plans for increasing wavelength range and flux in EUV/XUV

« Applications
— Metrology, micro-machining, interferometry
— Novel linear and nonlinear spectroscopies

— Ultrafast spectroscopies



Colorado
tate History of EUV laser sources

*The first EUV lasers were pumped by large lasers and were single shot
(Matthews et al. PRL 54, 110 (1985); Suckewer et al. PRL 55, 1753 (1985))

s LLNL pump laser characteristics:
gEN Pulse energy= 1 kJ/beam

o Pulse duration: 0.45 ns

s Intensity: 51013 W.cm™
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Colorado
e Current EUV discharge-pumped lasers

Ne-like Ar Capillary Discharge Laser : A=46.9nm

Laser Output Parameters

* Pulse Energy: 0.88 mJ @ 4 Hz

» Average Power ~ 3.5mW

* Peak Power : 0.6 MW

* Pulsewidth : 1.2 - 1.5 ns

« Beam divergence : 4.6 mrad

 Peak spectral brightness : 2x102°
ph/(mm?2 mrad? sec 104 BW)

Peak brightness
similar to their
laboratory-size
predecessors.
Average powers
similar to He-Ne
laser!

But only at one
wavelength!




Colorado
Tte EUV laser sources are “laser-like”

Characterization of spatial coherence 46.9 nm laser
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Colorado
ate  Applications of EUV lasers
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Colorado

Wavelength (A)

@ate  Scaling EUV lasers to shorter wavelengths

Scaling to shorter wavelengths is more
efficient with Ni-like ions

Excitation approaches

« Extremely fast discharges (>10'3 A/s
current rise time)

« Combined discharges and ultrafast pulse laser
excitation

* New approaches to laser-pumped schemes




Extreme nonlinear optics: high harmonics (HHG)

* Coherent EUYV light is generated by focusing an intense laser into a gas
 Broad range of harmonics generated simultaneously from 4.5 - 550 eV

o “Laser-like” coherent beams in EUV (Science 297, 376 (2002), Nature 406, 164 (2000))

fs pulse Gas

But flux low and
tunability limited in

“ UV and VUV!

EUYV beam

Fiber
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High harmonic sources are spatially coherent
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Opt. Lett. 27, 707 (2002)
Science 297, 376 (2002))
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A Harmonics are generated by atoms being ripped apart
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SOQeV

Periodic emission in time and frequency

E field

Harmonic emission

30

PRL 78, 1251, (1997)
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A Compact EUV source from HHG
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« By late 1990s, short-pulse, mJ, kHz lasers became available, allowing for HHG with
compact lasers and extending range to 2.7nm (> 500eV)

Applications in surface science, plasma imaging (Haight, Salieres, Leone, KM group)

Controlled phase matching became possible




History of high harmonic generation

EUYV harmonics = 38nm observed by Reintjes et al. in 1977 (JOSA 67, 251 (1977))

EUYV harmonics = 15nm observed by Rhodes et al. in 1987 (JOSA B4, 595 (1987))

Initial experiments used 20mJ, multi-table-top lasers at 2-10Hz

VOLUME 70,
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High-Order Harmonic Generation Using Intense Femtosecond Pulses

J. J. Macklin, J. D. Kmetec, and C. L. Gordon [11
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FIG. 4. Harmonic spectrum at 1.3x 10" W/em?, for 13 Torr
of Ne in a 2.5-mm tube. The features running through the low
harmonics are high harmonics appearing in second order of the
monochromator grating. The spectral width of individual har-
monics is instrument limited.



Why use hollow fibers?

Noble Gas Noble Gas
Vacuum {} _ Vacuum
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Phase matching and long interaction length in fibers increases the
efficiency, improves the EUV mode beam quality and reduces the gas load

Works well up to 80eV



Limits of hollow fiber phase matching

Noble Gas Noble Gas
Vacuum {}
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Higher harmonics are generated at higher laser intensities and higher levels of
ionization => very difficult to generate HHG efficiently above =80eV or
ionization > 5%




Low pressure HHG spectrum in argon

«——Region over which phase
matching can be achieved
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EUYV output

Phase matched signal growth

' laser
EUV

Ak =0

* Need to phase match to get
efficient EUV generation i.e.
qklaser - kEUV =Ak=0

« If Ak # 0, want to adjust or
restrict emission from regions
that are out of phase

e Coherence lengths for HHG

in the presence of high levels
of ionization are < 100pm



Quasi-Phase-Matching can adjust for phase mis-match

 Traditional Quasi-Phase-Matching, Ak = K = 27mm - A= Periodicity of nonlinear

medium

Intensity

Length

Periodically poled
materials

Fejer et al.,JOE 28, 2631 (1992); Opt.
Lett. 22,1834 (1997)



A EUV Photonics: modulated hollow core fibers
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create modulations of Imm -
0.25mm periodicity — | |e— 100mm
This modulates the laser intensity, | 150pm dia.
and in turn the EUV amplitude and Modulation depth ~5-10 %
phase
=srcale exaggerated

Coherence lengths = 10’s - 100’s
microns




ém Shorter modulation periods give > 100eV higher energy!
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Intensity (arb.)

Quasi phase matching of EUV light in the water window in Ne
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* First phase matching technique at = 100% ionization (Emily Gibson et al., Science 302, 95 (Oct.
2003))

* Clear pathway to increase flux by several orders of magnitude using longer fibers, tighter
modulations and higher fields

« HHG has promise as a light source up to keV, for chemical spectroscopies and high-contrast bio-
microscopies in “water window”




OPM will significantly extend the efficient range of HHG
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Specific routes towards improved EUV HHG sources

* Increase efficient energy range from 80eV to = keV on a desktop -

- modest increase in intensities from 10> Wem=2 to < 101¢ Wem2

- decreased periodicities and use of tapered fibers (e.g. A = 0.1mm)
- harmonic generation from ions

- decreasing laser pulsewidth from 20fs to 10fs

- alternate QPM schemes using colliding pulses

- higher rep rate lasers and 0}]f>timized fibers (length, diameter,
modulation depth, chirp) will increase flux

- coherently rotating molecules may allow us to optimize recollision
probability

- using shorter wavelengths to drive HHG
- designer pulses will channel laser energy into a single harmonic

- appropriate vision of quantum electronics in the 21st century,
involving precise control and manipulation of atoms and molecules




EUV HHG present and future

Current EUV HHG sources (per harmonic):
* Pulse Energy: <InJ @ 2kHz

» Average Power = 2uW at 27nm
» Peak Power : 0.2 MW
 Pulsewidth : < 5 femtoseconds
* Wavelengths : 300nm - 11nm

Straight Fiber * Fully spatially coherent
« < Tabletop

Future EUV QPM sources (per harmonic):

* Pulse Energy: 10nJ @ 20-100kHz

» Average Power = ImW

* Peak Power : 2 MW

 Pulsewidth : picosecond - attosecond
* Wavelengths : 300nm - 1nm

* Fully spatially coherent

M .
odulated Fiber - Desk




Why EUV?

Four-Wave Mixing
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Why EUV?

Third-Harmonic Generation
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A Why EUV?

KNIST-CLI

500 ~ 3.0
= ]
/g 400 EI/ ——s—— Experiment (160nm) J\[l
o -
t/ 300 .g 2.0 EH22 1
8 8 | EH11 EHo; l
) EHi3 Da .
@ 200 = NN 1)[
5 = 107 JJT;H P
A~ 100 = _ r‘;_sg‘gx;-:ﬂu@mf
=y n’ﬁ»’l -
0 v 0.0 sty on,
1440 150.1 157.6 1644 1712 178.0 0 100 200 300 400 500
Wavelength (nm) Pressure (torr)

g 400nmA \ 800nm

A A
o] oo 2000 | WD || i
2671 1 ¥ 800nm <

1 A

~ 200nm




EUV Nonlinear spectroscopies

Compact
EUV source

Laser

Nanoscale
induced grating

| l
EUY nonlinear spectroscopies for measuring

Diffracted
beam

nanometer-scale ultrafast thermal and electronic : :
responses of materials Damascene grating with alternate

silicon and copper stripes




WRIET R
NIST-CLI

Experimental Setu

CCD

Pump »
delivery SIS N

laser

Damascene
HHG cell  puv

ROC 10m
mirror



S0
£
S
=
3
5o
~
S
S
2
&~
=
8
S
~
i
Ay
o
)
2
2
2,
S
e~y

(1) Static Grating

Orel

(2) Impulsive optical pump

ﬂ}rel+\ﬂ}p



Observe strong experimental EUV modulated signal
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ADiffraction

A Diffraction

Filter diagonalization yields power spectrum
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< eea>__Theory (cont’d)
* Changes in diffraction efficiency:

C.

1

 The observed changes in reflectivity of several percent are in agreement with
theory, assuming a .3nm relative change in height. This deflection was
independently verified using interferometry for similar experimental conditions.

2

2
. pumped
C.

2

2
pumped
+ ‘Cn

Future work:
*Use smaller scale structures
*Understanding temporal structure

Examine different overcoated materials

*Perform transient grating expt. using multiple beams




Oxygen motion on Pt surface:
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CO oscillation on Pt surface:
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Photoelectron signal (arb. unit)
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A Conclusion
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« “Laser-like” coherent beams in EUV
— full spatial coherence (Science 297, 376 (2002))
— full temporal coherence (Nature 406,164 (2000))
— EUYV photonics (Nature 421,51 (2003))

* Advances limited only by our imagination
— compact EUV light sources over sub-keV energy range
— new linear and nonlinear spectroscopies
— nano and element-specific microscopies
— compact imaging systems

e Strong, coordinated, effort abroad

— EU consortia (Imperial College, Lund, FOM, ETH Zurich, Vienna, Max
Born, Max Plank, Italy, Greece, France)

— Large new consortium in Canada for basic/applied intense fields
— Several laboratories in Japan with large facilities in EUV laser
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